Embedding up to homotopy type in Euclidean space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposing Four-Manifolds up to Homotopy Type

Let M be a closed connected oriented topological 4-manifold with fundamental group π1. Let Λ be the integral group ring of π1. Suppose that f : M → P is a degree one map inducing an isomorphism on π1. We give a homological condition on the intersection forms λM and λ Λ M under which M is homotopy equivalent to a connected sum P#M ′ for some simply-connected closed (non-trivial) topological 4-ma...

متن کامل

A Menger Redux: Embedding Metric Spaces Isometrically in Euclidean Space

We present geometric proofs of Menger’s results on isometrically embedding metric spaces in Euclidean space. In 1928, Karl Menger [6] published the proof of a beautiful characterization of those metric spaces that are isometrically embeddable in the ndimensional Euclidean space E. While a visitor at Harvard University and the Rice Institute in Houston during the 1930-31 academic year, Menger ga...

متن کامل

Visualizing the embedding of objects in Euclidean space

Michael Littman, Deborah F. Swayne, Nathaniel Dean, and Andreas Buja Bellcore Morristown, NJ 07962-1910 ABSTRACT Matrices representing dissimilarities within a set of objects are familiar in mathematics, statistics and psychology. In this paper we describe XGvis, a software system which accepts diverse input data, such as graphs and multivariate data, develops a dissimilarity matrix from the da...

متن کامل

Note on the Embedding of Manifolds in Euclidean Space

M. Hirsch and independently H. Glover have shown that a closed ¿-connected smooth «-manifold M embeds in R2n~> if Mo immerses in A*""*-1, jè2k and 2/gra — 3. Here Mo denotes M minus the interior of a smooth disk. In this note we prove the converse and show also that the isotopy classes of embeddings of M in i?a"-»' are in one-one correspondence with the regular homotopy classes of immersions of...

متن کامل

Up-to-Homotopy Monoids

Informally, a homotopy monoid is a monoid-like structure in which properties such as associativity only hold ‘up to homotopy’ in some consistent way. This short paper comprises a rigorous definition of homotopy monoid and a brief analysis of some examples. It is a much-abbreviated version of the paper ‘Homotopy Algebras for Operads’ (math.QA/0002180), and does not assume any knowledge of operads.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1993

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700012338